What do they do?
Baffles and bubblers are sections of cooling lines that divert the coolant flow into areas that would normally lack cooling. Cooling channels are typically drilled through the mold cavity and core. The mold, however, may consist of areas too far away to accommodate regular cooling channels. Alternate methods for cooling these areas uniformly with the rest of the part involve the use of Baffles, Bubblers, or Thermal pins, as shown below.
FIGURE 1. Baffle, bubbler, and thermal pin
Baffles
A baffle is actually a cooling channel drilled perpendicular to a main cooling line, with a blade that separates one cooling passage into two semi-circular channels. The coolant flows in one side of the blade from the main cooling line, turns around the tip to the other side of the baffle, then flows back to the main cooling line.
This method provides maximum cross sections for the coolant, but it is difficult to mount the divider exactly in the center. The cooling effect and with it the temperature distribution on one side of the core may differ from that on the other side. This disadvantage of an otherwise economical solution, as far as manufacturing is concerned, can be eliminated if the metal sheet forming the baffle is twisted. For example, the helix baffle, as shown in Figure 2 elow, conveys the coolant to the tip and back in the form of a helix. It is useful for diameters of 12 to 50 mm, and makes for a very homogeneous temperature distribution. Another logical development of baffles are single- or double-flight spiral cores, as shown in Figure 2 below.
FIGURE 2. (Left) Helix baffle. (Right) Spiral baffle.
Bubblers
A bubbler is similar to a baffle except that the blade is replaced with a small tube. The coolant flows into the bottom of the tube and "bubbles" out of the top, as does a fountain. The coolant then flows down around the outside of the tube to continue its flow through the cooling channels.
The most effective cooling of slender cores is achieved with bubblers. The diameter of both must be adjusted in such a way that the flow resistance in both cross sections is equal. The condition for this is:
Inner Diameter / Outer Diameter = 0.707
Bubblers are commercially available and are usually screwed into the core, as shown in Figure 3 below. Up to a diameter of 4 mm, the tubing should be beveled at the end to enlarge the cross section of the outlet; this technique is illustrated in Figure 3. Bubblers can be used not only for core cooling, but are also for cooling flat mold sections, which can't be equipped with drilled or milled channels.
FIGURE 3. (Left) Bubblers screwed into core. (Right) Bubbler beveled to enlarge outlet
NOTE: Because both baffles and bubblers have narrowed flow areas, the flow resistance increases. Therefore, care should be taken in designing the size of these devices. The flow and heat transfer behavior for both baffles and bubblers can be readily modeled and analyzed by C-MOLD Cooling analysis.